
Physics H7C Fall 1999 Solutions to Problem Set 6 Derek Kimball

At the question period after a Dirac lecture at the University of Toronto, somebody
in the audience remarked: “Professor Dirac, I do not understand how you derived
the formula on the top left side of the blackboard.”
“This is not a question,” snapped Dirac, “it is a statement. Next question, please.”

- George Gamow, excerpted from Thirty Years that Shook Physics, a very fun book
on the people involved in the early development of quantum mechanics.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

The eye is focused at infinity, so we assume the rays incident on the eye are all
parallel (Fig. 1). From the geometry of the diagram in Fig. 1 it is clear that
θ = 2φ. Snell’s law demands that sin θ = n sinφ where n is the refractive index
of the humor. We can make the small angle approximation (making the realistic
assumption that light passes only through a small iris in the center of the front of
the eye) and just say that θ = nφ, which gives us n = 2.
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Problem 2

All light coming from the point source is normally incident on the surface of the
hemispherical hole in the end of the light guide. Thus the amplitude of the electric
field of transmitted light Et is given by (from Strovink and/or Fowles):

Et

E0
=

2Z2

Z2 + Z1
, (1)

where Z1,2 =
√
µ1,2/ε1,2. Thus the transmission coefficient t = Et

E0
is given by:

t =
2

1 + n
, (2)

where n = 2 is the refractive index. The percent of light transmitted (intensity) is
T = |t|2 = 4/9 in our case.
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Next consider the diagram in Fig. 2. We require that ϕ ≥ sin−1 (1/n) for total
internal reflection. From geometry this demands that α ≤ cos−1 (1/n). We can
now integrate to find the total solid angle ∆Ω of light accepted into the light guide:

∆Ω =
∫ 2π

0

∫ α

0

sin θdθdφ = 2π(1− cosα) = 2π(1− 1/n) (3)

The percent of light accepted is then ∆Ω/4π, or 1/4. So then the fraction of light
that travels an appreciable distance is given by the fraction of light transmitted
through the interface in the correct direction which is 1/9.

Problem 3

We start out with right-hand circularly polarized light and send it through a
quarter-wave plate with the fast axis vertical:

[
1 0
0 −i

]
·
[

1
−i

]
=

[
1
−1

]
. (4)

Next, we send the light through a linear polarizer with the transmission axis at
45o:

1
2

[
1 −1
−1 1

]
·
[

1
−1

]
=

[
1
−1

]
. (5)
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So we have 100% transmission for right-circularly polarized light.

For left circularly polarized light, no light is transmitted:

1
2

[
1 −1
−1 1

]
·
[

1 0
0 −i

]
·
[

1
i

]
=

[
0
0

]
. (6)

So the right hand circular analyzer works as claimed.

Problem 4

(a)

If a linear polarizer at 90o to ẑ (the direction of light polarization) is placed in a leg
of the Michelson interferometer, no light travels in one leg of the interferometer.
Then there will be no fringes and no interference, so V ≡ (Imax − Imin)/(Imax +
Imin) = 0. This is clear since Imin = Imax if there are no fringes.

(b)

Now, with a linear polarizer at 45o to ẑ upstream of the first linear polarizer,
there is light transmitted in both legs of the interferometer. Interference will not
occur for light of orthogonal polarizations, so only light polarized in the ẑ direction
contributes to the fringes.

The linear polarizer at 45o transmits:

1
2

[
1 1
1 1

]
· E0

[
1
0

]
=
E0

2

[
1
1

]
. (7)

The next polarizer only transmits light in the orthogonal direction, so the trans-
mitted light is given by

E0

2

[
0
1

]
.

The light bounces off the mirror, which preserves polarization, passes through
the second polarizer with no loss of amplitude, then passes through the polarizer
at 45o (which now appears to be at -45o with respect to the direction of light
propagation):

1
2

[
1 −1
−1 1

]
· E0

2

[
0
1

]
=
E0

4

[ −1
1

]
. (8)

So now at the output we have two waves from the different arms of the interfer-
ometer (supposing light is propagating in the x̂ direction):

�E1 =
E0

4
ẑ +

E0

4
ŷ

�E2 = E0e
iφẑ, (9)

where φ is the phase difference induced by the differing path lengths for the arms
of the interferometer.

Thus the intensity of light at the output is given by:

I = 2
(
E0

4

)2

+ E2
0 + 2

E2
0

4
cosφ (10)

so we see that for Imax and Imin:

Imax,min =
9
8
E2

0 ± E2
0

2
. (11)

Using these results in our equation for fringe visibility we find that V ≡ (Imax −
Imin)/(Imax + Imin) = 4/9

Problem 5

(a)

We have two light beams, whose electric field amplitudes are given by:

EA ∝ Re[(x̂+ iŷ)ei(kz−ωt)]

and
EB ∝ Re[(x̂− iŷ)ei(kz−ωt)] ,

with Re denoting the real part. We are not given the slit widths, so let’s assume
that they are small enough to be ignored in our analysis...

With no analyzer in place, the two beams are orthogonally polarized so there is
no interference. Thus the intensity at the screen is simply the sum of the two
individual intensities, which with small angle approximations is roughly I ≈ 2I0.

(b)

With an analyzer that accepts only ŷ polarized light, the two light beams have the
same polarization after the analyzer and then can interfere. The interference is
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that of a typical double slit experiment (Young’s experiment), as solved in Fowles
pp. 59-61. Of course, half the amplitude of each wave has been removed by the
analyzer, so the resulting interference pattern is given by:

I(Y ) =
I0
4

(
1 + cos

(
πhY

λD

))
. (12)

(c)

The analyzer blocks out left-hand circularly polarized light so there is contribution
only from EB . Therefore the intensity at the screen is I ≈ I0.

Problem 6

We want to prove that

N∑
n=1

exp (iφn) =
sinN∆φ/2
sin∆φ/2

exp (iφ̄),

where

∆φ ≡ φn+1 − φn,

and φ̄ is the average of the φn.

Recall that for a geometric series
∑∞

0 ar
n = a

1−r , where |r| < 1. Let us rewrite the
sum above as the sum of two infinite series. In order to use the geometric series
formula, let’s multiply each term in the series by an amplitude αn = (1 − x)n
which ensures that |αn exp (iφn)| < 1. We can require that the αn’s are so close
to unity that they are very well approximated by 1 for the first N terms. We are
only worried about the convergence of the tail of the series, which is taken care of
with this postulate. We could even take the limit as x→ 0 to make this argument
more mathematically sound.

Now let’s write the series
N∑

n=1

exp (iφn)

as the difference of two infinite geometric series:

N∑
n=1

exp (iφn) →
N∑

n=0

αn exp (iφ1) exp (in∆φ)

=
∞∑

n=0

αn+1 exp (iφ1) exp (in∆φ)−
∞∑

n=0

αN+n+1 exp (iφ1 +N∆φ) exp (in∆φ)

=
(1− x) exp (iφ1)

1− (1− x) exp (i∆φ) −
(1− x)(N+1) exp (iφ1 +N∆φ)

1− (1− x) exp (i∆φ)
(13)

We now let x go to 0, and we then have:

N∑
n=1

exp (iφn) =
exp (iφ1)

1− exp (i∆φ)
− exp (iφ1 +N∆φ)

1− exp (i∆φ)

= exp
(
φ1 +

N − 1
2

∆φ
)(

exp (−iN∆φ/2)− exp (+iN∆φ/2)
exp (−i∆φ/2)− exp (+i∆φ/2)

)
(14)

from which we deduce that:

N∑
n=1

exp (iφn) =
sinN∆φ/2
sin∆φ/2

exp (iφ̄) (15)

proving the original conjecture.

Problem 7

As discussed in Fowles pp. 126-128, this problem can be solved using Fresnel zones.
The radius of the Nth Fresnel zone in this case is given by:

R =
√
NλD (16)

since the factor L = (1/h+ 1/h′)−1 = D in our case (see Fowles Eq. 5.36).

(a)

(C) The smallest radius for which the light from Fresnel zones cancel is that which
includes the first two. In this case the optical disturbance is given by

Up = |U1| − |U2| ≈ 0.
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(A) With no screen, the optical disturbance is half that due to the first Fresnel
zone,

Up =
1
2
|U1|.

(B) If we block out the first two Fresnel zones, the optical disturbance is approxi-
mately half that due to the third zone, or

Up =
1
2
|U3| ≈ 1

2
|U1|.

So as you can see, the choice of

R =
√
2λD

satisfies all the required conditions.

(b)

This will hold whenever a similar situation occurs, i.e. an even number of Fresnel
zones are blocked by the black disk. The optical disturbances UA and UB will
always sum to equal the optical disturbance without the screen U0 because they
are complementary apertures. However, only when either UA or UB is zero can
the squares (∝ I) be equal.

So whenever R =
√
2nλD where n is an integer, this is the case.

Problem 8

From Maxwell’s equations in conducting media, we get the wave equations:

∇2 �E(z, t) = Ẽ0e
i(κz−ωt)

∇2 �B(z, t) = B̃0e
i(κz−ωt) (17)

where

κ2 = µεω2 + iµσω. (18)

For a good conductor,

κ =
√
µσω

2
(1 + i). (19)

Also from Maxwell’s equations for a conducting medium, we find that:

B0 =
|κ|
ω
. (20)

The power lost per square meter due to ohmic heating is given by the relation:

〈P 〉 = σ
∫
〈E2〉dV

=
σ

2

∫
|Ẽ0|2 exp (−

√
µσω

2
z) =

σ

2

√
2
µσω

E2
0 (21)

The average value of |�S| is given by 〈 1
µ
�E × �B〉. Plugging in values from above, we

find

〈|�S|〉 = σ

2

√
2
µσω

E2
0 (22)

which confirms the conjecture stated in the problem.
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